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Abstract. We propose an identification of the conformal field theory underlying Lipatov’s spin-chain model
of high-energy scattering in perturbative QCD. It is a twisted N = 2 supersymmetric topological field
theory, which arises as the limiting case of the SL(2, R)/U(1) non-linear σ model that also plays a role
in describing the Quantum Hall effect and black holes in string theory. The doubly-infinite set of non-
trivial integrals of motion of the high-energy spin-chain model displayed by Faddeev and Korchemsky are
identified as the Cartan subalgebra of a W∞ ⊗ W∞ bosonic sub-symmetry possessed by this topological
theory. The renormalization group and an analysis of instanton perturbations yield some understanding
why this particular topological spin-chain model emerges in the high-energy limit, and provide a new
estimate of the asymptotic behaviour of multi-Reggeized-gluon exchange.

1 Introduction and summary

In the last few years, Lipatov [1] and others have devel-
oped a theory of high-energy scattering in perturbative
QCD, based on the t-channel exchanges of Reggeized glu-
ons interacting via s-channel gluons. In the large-Nc limit,
the elastic scattering amplitude is related to eigenstates
of Hamiltonians with nearest-neighbour interactions, that
are holomorphic and antiholomorphic functions of the
transverse coordinates, and whose eigenvalues determine
the asymptotic behaviour in the high-energy limit. These
Hamiltonians for the exchange of Ng Reggeized gluons can
be written as:

HNg
=

Ng∑
k=1

Hk,k+1 ; HNg
=

Ng∑
k=1

Hk,k+1. (1)

One imposes periodic boundary conditions Hn,n+1 = Hn,1

in the holomorphic sector, and analogouslyHn,n+1 =Hn,1
in the anti-holomorphic sector, where we use bars to de-
note the replacements z → z, etc. The two-particle inter-
actions can be expressed in several equivalent forms:

Hjk = P−1
j log(zj − zk)Pj + P−1

k log(zj − zk)Pk + 2γE ,

= 2log(zj − zk) + (zj − zk)log(PjPk)(zj − zk)−1

+2γE ,

=
∞∑

l=0

(
2l + 1

l(l + 1) − L̂2
ik

− 2
l + 1

), (2)

where
Pi ≡ i

∂

∂zi
, L̂2

ik ≡ (zi − zk)2PiPk, (3)
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and γE is the Euler constant. Lipatov conjectured [1] that
the model was integrable, was able to solve the case of two-
gluon exchange exactly, suggested that the general case
could be solved using the Bethe Ansatz, and exhibited
some non-trivial integrals of motion.

Faddeev and Korchemsky [2] have observed that the
Lipatov Hamiltonians are just those of Heisenberg ferro-
magnets with non-compact spins s = 0, -1. This observa-
tion is prompted by the fact that Lipatov’s kernel L̂ij can
be represented as a Heisenberg interaction term

L̂ij = Si · Sj (4)

among spin operators Si at neighboring sites i, j of a chain,
whose components are defined in the (anti-)holomorphic
sector of impact parameter space as follows:

S+
i = z2

i ∂i − szi ; S−
i = −∂i ; S3

i = zi∂i − s. (5)

This identification enabled them to find a doubly-infinite
set of non-trivial integrals of motion, verify the integra-
bility of the model, and solve it in the Ng = 2 case us-
ing a generalized Bethe Ansatz [2]. However, they did
not give any symmetry origin for the integrals of motion,
and neither they nor Lipatov [1] has identified the specific
two-dimensional field theory corresponding to this lattice
model in the large-Ng limit.

Although the prototypical case Ng = 2 can teach us
many important lessons, it cannot by itself control the
high-energy behaviour of QCD, in particular because it
does not respect unitarity. It is therefore of interest to ex-
tend the above-mentioned analyses of the Ng = 2 case to
larger Ng. There has indeed been considerable work on
the kernel for Ng = 3, in connection with the odderon in
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QCD [3], and the general case of large Ng has also been
examined [4]. Transitions in the t channel between dif-
ferent numbers of gluons have also been analyzed [5]. It
would be valuable to develop a more powerful approach
to the analysis of the large-Ng limit, which should resem-
ble a two-dimensional field theory. As a step towards this
goal, in this paper we identify the two-dimensional confor-
mal field theory underlying Lipatov’s two-body spin-chain
Hamiltonian in the continuum limit.

In Sect. 2, we use symmetry principles and the field-
theoretical description [6] of analogous compact Heisen-
berg ferromagnetic spin chains as guides to this identi-
fication. It is well known that such systems correspond
to compact O(3) non-linear σ models in the unitary con-
densed-matter cases s = 1/2, 1, 3/2, .... When the number
of spin carriers at each site is fixed, such spin chains pos-
sess a local U(1) symmetry, and we demonstrate that this
is also a property of Lipatov’s scattering kernel [1] for
Reggeized gluons and of his effective Hamiltonian.

We argue in Sect. 3 that the conformal field theory
corresponding to high-energy QCD is the limiting case
s → 0− (and s → −1+) of the non-compact SO(2, 1)/U(1)
non-linear σ model, which describes a Heisenberg system
with s < 0, and is known to possess a W∞ symmetry.
The doubly-infinite set of conserved quantities exhibited
by Faddeev and Korchemsky [2] is the Cartan subalgebra
of a W∞ ⊗W∞ symmetry that appears in the continuum
limit. This is a bosonic subalgebra of a twisted N = 2
supersymmetric W algebra possessed by the topological
theories that are the limits of the non-compact non-linear
σ models when s → 0,−1, which correspond in the contin-
uum limit to high-energy scattering in perturbative QCD.
Quantum Hall conductors [7] and stringy black holes [8]
are known to be described by the same non-compact non-
linear σ model for generic values of the Landau level fill-
ing parameter ν (black hole mass), and to possess this
enhanced N = 2 supersymmetry in the limit of complete
filling ν = −1/s = 1 (at the core of the black hole).

As we show in Sect. 4, instantons play an important
rôle in the renormalization-group flow that drives the non-
compact σ model towards the limiting case s → 1. They
also provide us with a parametric estimate of the depen-
dence of the high-energy behaviour of the exchange of
a large number of Reggeized gluons, corresponding to a
cylindrical topology for the system exchanged in the t
channel. More complicated topologies for the exchanged
system could also be treated within this field-theoretical
approach, but are not discussed in this paper.

Finally, in Sect. 5 we summarize our conclusions, em-
phasize the aspects in which our analysis stands in need
of confirmation, and appraise some of the prospects for
future progress.

2 Symmetries of Lipatov’s spin-chain model

It will be convenient for our subsequent discussion to ex-
pand the Hamiltonian (2) formally as an infinite series in

powers of the Heisenberg operator (4) Si · Sj :

Hij = − 1
Si · Sj

+ const

+
∞∑

l=0

2l + 1
l2(l + 1)2

(Si · Sj) +O[(Si · Sj)2], (6)

where the omitted operators are higher powers of the
Heisenberg operator. They constitute irrelevant operators
in a renormalization group sense, by naive power counting,
so do not affect the continuum limit of the theory, and we
shall not deal explicitly with them in what follows. How-
ever, (6) does contain a non-analytic term 1/Si · Sj , due
to the l = 0 partial wave in (2), for which the Taylor
expansion fails. This is a particular feature of the non-
compact spin formalism, and should be contrasted to the
conventional case of compact spin s > 0, where Heisen-
berg chains can be represented as non-singular functions
of Si ·Sj . Formally, as we shall describe below, one can reg-
ularize the l = 0 limit by representing the finite-size spin
chain, which corresponds to a fixed number of gluons Ng,
as an infinite-size lattice chain with ‘holes’, i.e. missing
spins. As a quantum-mechanical problem, removing spins
is a complicated procedure, since it involves modification
of the Hilbert space. However, attempts have been made
to describe doping in anti-ferromagnetic chains with the
hope of understanding the relevance of the hole dynamics
in scenarios for magnetic superconductivity [9,10]. Below
we borrow from these techniques.

An important feature of the model (1, 2) is the fact
that the number of Reggeized gluons per lattice site is
fixed. This implies that there is a local gauge symmetry in
the Heisenberg interaction Si · Sj , which simply expresses
the particle-number conservation law. This symmetry can
be seen straightforwardly if we represent the Heisenberg
interaction in terms of fundamental ‘Reggeon’ creation
and annihilation operators C†

α,i and Cα,i, in direct analogy
with the corresponding representation in the solid-state
models relevant to the description of high-temperature su-
perconductivity [10]. To this end, we write the Heisenberg
spin-spin interaction in a ‘microscopic’ form

Si · Sj = −J
∑
〈ij〉

∑
α,β

Ti,αβT
αβ
j ;

Tαβ
i ≡ C†,α

i Cβ
i (no sum over i), (7)

where α, β denote spin s indices, i, j are lattice-site indices
and 〈. . .〉 denote nearest-neighbour sites. To exhibit the
U(1) symmetry we introduce a slave-boson Ansatz

Cα
i = ψi,αz

†, (8)

where ψα,i, ψ
†
α,i are fermion operators that annihilate

or create a ‘hole’ at a site i in the spin representation
s. They satisfy canonical commutation relations. On the
other hand, the z, z† are Bose fields that are spin sin-
glets. The Ansatz (8) satisfies trivially a local U(1) phase
symmetry

ψj,α → eiθjψj,α,

zj → eiθjzj , (9)
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which is a consequence of the local constraint restricting
the number of Reggeons per site:

C†
iCi = ψ†

iψi + z†z = 2s. (10)

It can be shown [9,10] that the above formalism is a conve-
nient way of representing the effects of holes in a spin chain
as a path integral over fermionic variables parametrizing
the Berry-phase term that describes the missing-spin ef-
fect in the action. Essentially, one describes the effects of
the missing spin by subtracting from the action the con-
tribution that a spin would make if it were there. This
is a simple way of describing correctly the change in the
Hilbert space.

By implementing the slave-fermion Ansatz, one can
consider a situation where the total number of Reggeons
is fixed at Ng, but the size of the lattice chain is infinite.
This fixed-Reggeon-number case has a natural doping in-
terpretation and the infinite-chain limit provides a field-
theory interpretation in the continuum limit, as we discuss
in more detail in Sect. 3. The ‘doping concentration’ can
be defined formally as the vacuum expectation value η of
the fermion bilinears in a splitting of the form:

ψ†
α,iψα,i = < ψ†

α,iψα,i > + : ψ†
α,iψα,i :

≡ η + : ψ†
α,iψα,i : . (11)

The splitting (11) provides us with the advertized regu-
larization of the non-analytic terms 1/Si · Sj in (6). Using
the constraint (10) and the appropriate free-fermion com-
mutation relation, the Heisenberg terms can be written in
the form:

Si · Sj = η + : ψ†
α,iψα,i :

−4s2ψα,jψ
†
α,iψβ,iψ

†
β,j + . . . , (12)

where the . . . indicate terms that are irrelevant operators
in a renormalization group sense, by naive power counting.
One can expand (12) formally in a Taylor series in powers
of 4s2/η, and at the end one can take the twin limit η, s →
0 to recover the ‘half-filled’ action (2). Clearly, the crucial
test of the validity of this ‘hole-regulator’ scheme will be
provided by a careful study of the scaling properties of
the model, as a function of the doping concentration η.
This is left for future work. What we argue below is that
the above scheme provides one with the necessary tools
to study the symmetries of the model in a straightforward
and physical way.

Concentrating on the relevant operators (by naive
power counting) one observes that the gauge-invariant
effective Hamiltonian thus constructed contains amongst
others a term

∑
ij

Jijψ
†
i,αψ

α
j ∆ij + . . . , (13)

where Jij = (4s2/η)+
∑∞

l=0 2l + 1/[l2(l+1)2] and the link
variable ∆ij =< ψα,†

i ψα,j > is a Hubbard-Stratonovich
gauge field. For details of this construction we refer the

interested reader to the relevant literature [10]. Thus, the
Hamiltonian can be written in terms of the field

Mαβ
ij ≡ ψα†

i ψβ
j , (14)

which is manifestly gauge invariant in the light-cone
gauge, for which ∆ij = 1 along the links. This is a par-
ticularity of a two-dimensional gauge theory, which will
provide us with the generators of an infinite-dimensional
Lie algebra of symmetries, as we shall see later.

The basic advantage of the U(1) gauge symmetry is
that it allows for a parafermion construction of the con-
formal field theory corresponding to the continuum limit
of the statistical model. This is important because the
non-compact spin case of Lipatov’s kernel apparently cor-
responds to the limiting case of a non-compact SL(2, R)
Wess-Zumino σ model, as we discuss in Sect. 3. The ex-
tra U(1) symmetry at any doping concentration, i.e. arbi-
trary but fixed Reggeon number with at most one Reggeon
present per site, implies that one can mod out the local
Abelian phase factors to obtain an SL(2, R)/U(1) coset
model. Such models are equivalent to parafermion mod-
els, and are known [11] to possess an infinite-dimensional
W∞ algebra of symmetries. Below we construct such sym-
metries explicitly in the lattice model.

Before doing so, we remark that Heisenberg chains
with holes are known [12] to possess graded (supersym-
metric) algebras generated by particles (spins) and holes
(superpartners). To introduce the empty sites, one allows
for a hopping element

tijψ
†
iψj (15)

in the Hamiltonian of the chain1. At half-filling, tij → 0,
and this limit can be taken at the very end of our compu-
tation if necessary, after obtaining important symmetry
information, e.g. on supersymmetry . In terms of projec-
tion operators χAB ≡ |A >< B| on the 2s + 1 states on
a lattice site, including the empty ones, the Hamiltonian
reads:

H =
∑

σ

∑
ij

(tijχ0σ
i χσ0

j + Jijχ
σσ′
i χσσ′

j ), (16)

where the indices σ denote spin states, with the exclusion
of the empty ones.

The operators χAB satisfy a supersymmetry algebra
in the spin s representation. In the non-compact s = −1
case of interest such a supersymmetry becomes twisted,
and the holes represent ghost states. Supersymmetry im-
plies a W∞ ⊗ W∞ algebra in the bosonic sector [13]. A
similar W∞ ⊗ W∞ structure arises in the quantum Hall
system: one W∞ appears at each Landau level, and is as-
sociated with magnetic translation operators, while the
other mixes the various levels, and is associated with op-
erators that appear in the Hamiltonian of the model [7]. In
the Quantum Hall case there is also an associated super-
symmetry, similar to that of the Heisenberg chain, which

1 In the gauge-invariant formalism discussed above, this hop-
ping element is induced by the doping, and is accompanied by
the replacement tij → ∆ijtij
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explains the underlying W∞ ⊗ W∞ structure. The simi-
larity of the Hall system to the present model is discussed
further in the next section, where it is argued that both
models can be mapped onto Wess-Zumino models that
belong to similar equivalence classes.

To see one of the W∞ structures, we make use of the
field (14), in terms of which Lipatov’s kernel is expressed.
One easily sees that the following algebra is satisfied for
the non-compact case s = −1, which has a heighest-wight
representation and |2s+ 1| = 1 states:

[Mi1j1 ,Mi2j2 ] = δj1i2Mi1j2 − δj2i1Mi2j1 , (17)

which is a field-theory realization of a W∞ algebra. Notice
the formal similarity of the algebra (17) to the correspond-
ing one generated by fermion bilinears in two-dimensional
large-Nc QCD with adjoint fermions, considered in [14].
The difference is that in our case Lipatov’s Hamiltonian
pertains to the pure ‘glue’ sector of quark-quark high-
energy scattering processes, and the associated fermion
bilinears arise from the mapping of the model to a spin
system with doping.

The supersymmetry of the doped theory suggests the
existence of another W∞ structure. This must be associ-
ated with the bosonic degrees of freedom of the Ansatz
(8). One can construct infinite bosonic symmetries out of
these variables, which resemble W∞ structures. Indeed,
the Hamiltonian (6) depends on the composite bosonic
bilocal operator ziz

†
j , which transforms like a gauge link

variable. In the continuum limit, one can define the bilocal
field (in space):

Φ(x, y; t) = z(x, t)z†(y, t), (18)

which satisfies the W∞ algebra:

[Φ(x, y; t), Φ(x′, y′; t)] = δ(x− y′)Φ(x, y′)
−δ(y′ − x)Φ(y, x′). (19)

It should be remarked that the above algebra is classical
in the sense that it was derived by operators in the model
which are constructed so as to obey the canonical com-
mutation relations. Quantum corrections that arise after
path integration [10] should in general modify the algebra
by appropriate central extensions, as well as non-linear
terms [11]. Investigations of these issues falls beyond the
scope of the present article.

Notice that this algebra pertains to the field space of
the two-dimensional high-energy limit of QCD. In this re-
spect it is a ‘target-space’ symmetry algebra of the corre-
sponding σ model. It is clear from [2] that there is a dou-
ble set of mutually-commuting infinite-dimensional Car-
tan subalgebras in Lipatov’s model [1]. However, in con-
trast to the above discussion, these symmetries associated
with the integrability of the model are ‘world-sheet’ sym-
metries. The world sheet in this case consists of the phys-
ical transverse impact-parameter space of the Reggeized
gluons, and its finite size is related to the number of them
in a physical high-energy quark-quark scattering process.
We expect that the connection between the target-space

and world-sheet pictures in this case is provided in an anal-
ogous way to the elevation of world-sheet W∞ symmetries
to target space in the two-dimensional black hole case. In
the black-hole case, this association was achieved by ap-
propriate (1, 1) deformations, but it remains to be seen
what is the precise form of such operators in our present
case. Until this is done, this form of association can only
be considered as a conjecture.

Before closing this section, it is useful to investigate
the form of the world-sheet symmetry algebras of the
present model. Their Cartan subalgebras have been con-
structed by Fadeev and Korchemsky using Lax operator
techniques [2]. Let us first concentrate in the Qk set, which
in their notation consists of operators of the form:

Qk =
∑

n≥i1≥...ik

ikzi1i2zi2i3 . . . ziki1∂i1 . . . ∂ik
, (20)

where zi1i2 ≡ zi1 − zi2 , ∂i1 ≡ ∂/∂zi1 . A classical w∞ al-
gebra acting on a holomorphic function is generated by
operators of the form:

wm
n ≡ zm∂n, (21)

satisfying

[wm
n , w

m′
n′ ] = (nn′ −m′m)wm+m′

n+n′ + . . . , (22)

where the . . . indicate possible quantum central exten-
sions. Viewing the commutator as a Poisson bracket on
a two-dimensional phase space, these are transformations
that preserve the phase-space area. The Cartan subalge-
bra corresponds to the subset with m = n, i.e. to an equal
number of coordinates and momenta, exactly as happens
in (20). One can, therefore, proceed formally to construct
the remaining generators of the w∞ algebra by defining:

Ql
k =

∑
n≥il≥...i1

ikzi1i2zi2i3 . . . ziki1∂i1 . . . ∂il
. (23)

These operators can be constructed explicitly in the s = 0
case, and then extended to s = −1 by a similarity transfor-
mation. The required transformation in our case is given
by:

Os=−1 ≡ (z12z23 . . . zn1)−1Os=0(z12z23 . . . zn1). (24)

These transformations apply in the case where there are
periodic boundary conditions in the finite-size chain. For
an infinitely-long doped chain the similarity transforma-
tion is provided by:

S−1
doped = Πi<k(zi − zk). (25)

Such similarity transformations are non-unitary and they
also appear in Quantum Hall systems, connecting oper-
ators pertaining to the Integer and Fractional Quantum
Hall Effects [7]. The W algebra pertaining to the oper-
ators (23) corresponds to the algebra of a single Landau
level in the Quantum Hall case. We expect that the second
set, I, should correspond to the W algebra that mixes the
Landau levels in the Quantum Hall case, but this remains
to be demonstrated.
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3 Generalized Heisenberg ferromagnets,
compact and non-compact non-linear σ
models

The precise nature of these world-sheet W algebras can
be investigated if one finds a σ-model representation of
the above picture, and uses conformal field theory tech-
niques to construct the generators of the transformations.
As we shall argue below, the singular limit s = 0 can be
considered from the point of view of a non-compact spin
problem, which suggests the representation of the theory
in terms of a SL(2, C) algebra. Restricting ourselves to
the subgroup SL(2, R) and taking into account the ex-
tra U(1) symmetry, one can conjecture the form of the σ
model that is appropriate for such a system: it is a gauged
Wess-Zumino model, based on the group SL(2, R)/U(1).
The topological nature of the problem may be captured by
an appropriate twisted world-sheet supersymmetry which
can be taken to be N = 2. To substantiate these claims,
but not to prove them rigorously, we now review briefly
the situation in the compact spin case, and then continue
the results analytically to the non-compact case.

It is well known [6] that Heisenberg spin models may
be mapped onto O(3) non-linear σ-models in the limit of
large spin s:

S2
1 + S2

2 + S2
3 = s(s+ 1) > 0. (26)

As reviewed in [6], the spin Hamiltonian for large spin s
corresponds to the Lagrangian

L =
1
2g
∂µφ∂

µφ+
θ

8π
εµνφ(∂µ × ∂νφ) (27)

with the conventional normalization constraint φ2 ≡ φ2
1 +

φ2
2 + φ2

3 = 1, and the following identifications of the cou-
pling constant g and the topological angle θ that appears
in the antiferromagnetic case:

g =
2
s

, θ = 2πs. (28)

We do not discuss further the interesting physics associ-
ated with the θ parameter [6]. In addition to the formal
derivation of the O(3) non-linear σ model in the limit of
large s, there is also evidence that this model describes
correctly features of Heisenberg models with small s, as
reflected in Fig. 1. For example, both analytical and nu-
merical studies support the maintenance of Néel order in
the antiferromagnetic ground state for s = 1/2 [6], as as-
sumed in deriving the σ model in the continuum limit.

The two-dimensional O(3) non-linear σ model is well
understood: indeed, its exact S-matrix is known. For our
purposes, the most useful formulation is as a CP 1 σ model,
in which the unit vector φ is represented using a two-
component complex spinor zα:

φ = z∗σz ; |z|2 = 1, (29)

where the σ are Pauli matrices, in terms of which the
Lagrangian (27) becomes

L =
1
g
[|∂µz|2 + (z∗∂µz)2] +

θ

2π
∂µε

µν(z∗∂νz). (30)

central
charge (c)

s

1/2

-1

-1

HEQCD

Stringy 
Black 
Holes 

Heisenberg Spin Chains 

c=3k/(k+2) -1 

c=3k/(k-2)-1 k=2s

0

0

RG Flow

RG Flow

RG
Flow

Fig. 1. Map of the space of the gauged compact and non-
compact non-linear σ models discussed in this paper, includ-
ing conventional Heisenberg spin chains with s ≥ 1/2 that
are described by SO(3)/U(1) CP 1 models, and analytic con-
tinuations to s < 0 that are described by SO(2, 1)/O(2) or
SO(2, 1)/O(1, 1) models. High-energy scattering in QCD is de-
scribed by a twisted supersymmetric version of the limiting
cases s = 0, −1, and stringy black holes by models with s < −1.
The vertical coordinate measures the central charge c, and we
exhibit the renormalization-group flows towards s = 1/2 in the
infrared limit of unitary spin models, towards s = 0 for the
anti-unitary models whose twisted supersymmetric version de-
scribes high-energy scattering in perturbative QCD, and away
from s = −1 for the unitary stringy black-hole models

Insight into this model is obtained by rewriting it in terms
of the U(1) gauge field:

Aµ = iz∗∂µz, (31)

using this the Lagrangian (30) can be expressed as:

L =
1
g
|(∂µ + iAµ)z|2 − iθ

2π
∂µε

µνAν . (32)

Solving this model via a saddle-point method, one finds
that the z bosons acquire masses:

m = Λe−2π/g = Λe−πs, (33)

where Λ is an ultra-violet cutoff. The z bosons are free,
apart from interactions via a massless Abelian gauge field
with an effective gauge coupling strength:

e2 = 6π2m2. (34)

This gauge interaction confines the z bosons in the 1 + 1-
dimensional case, leading to a massive triplet of bound
states, in agreement with the exact S-matrix results for
the O(3) non-linear σ model [6].

To identify the conformal field theory to which this
model corresponds one has to apply finite-size scaling
methods in the way studied in [6]. The result of such an
analysis indicates that the CP 1 model belongs to the same
equivalence class as the SU(2) Wess-Zumino conformal
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field theory. As is well known [6], the central charge of the
SU(2) Wess-Zumino model is:

c =
3k

(k + 2)
, (35)

where the level parameter k = 2s. Note, in addition, that
c is reduced by 1 if a U(1) subgroup is gauged. One fre-
quently considers an ultra-violet limit Λ → ∞ in which
the non-linear σ-model coupling g = 2/s also → ∞ (and
hence k → 0) in such a way that the z-boson mass m
and the CP 1 U(1) gauge coupling e remain fixed. How-
ever, one can also consider the case in which s = k/2 is
fixed to be zero, corresponding formally to g = ∞, and
take the limit Λ → ∞. In this case, m and e become in-
finite and the only remaining physical field is the U(1)
gauge field, which is however completely topological in
nature, since it is non-propagating. This interpretation of
the s = k/2 = 0 theory is supported by the fact that the
formula (35) yields a central charge c = 0 in this case,
corresponding to a topological gauge theory. We therefore
identify the s = 0 Heisenberg model formally as a topo-
logical U(1) gauge theory in the continuum limit.

We now consider the continuation of the above results
to s < 0. It is clear that the quantum Heisenberg model
cannot be represented in terms of Hermitean operators
when −1 < s < 0, since the quadratic Casimir

S1
2 + S2

2 + S3
2 = s(s+ 1) < 0 (36)

for this range of s. One must continue one or more of the
spin components S1,2,3 to complex values, and the sim-
plest two inequivalent possibilities are to take one or two
of the components to be anti-Hermitean. Taking a naive
continuum limit in which each of the spin components is
replaced by a conventionally-normalized local field vari-
able, the two inequivalent possibilities are:

−φ1
2 − φ2

2 + φ3
2 = 1, (37)

and
φ1

2 − φ2
2 + φ3

2 = 1, (38)

where each of the field components φ1,2,3 is understood to
be real. These both represent SO(2, 1) group manifolds,
but with different gaugings. Implementing the manifold
constraint by taking φ3 as the dependent variable, one
finds:

φ3 =
√

(1 + φ1
2 + φ2

2), (39)

and
φ3 =

√
(1 − φ1

2 + φ2
2) (40)

in the two cases. If these models are gauged the cor-
responding gaugings are with respect to compact O(2)
and non-compact O(1, 1), respectively. We have no formal
proofs, but expect that non-linear σ models on the non-
compact manifolds SO(2, 1)/O(2) and SO(2, 1)/O(1, 1)
are the continuum field theories corresponding to possi-
ble continuations of the spin systems (36) to the range
−1 < s < 0. The central charges for these models are
known to be:

c =
3k

(k − 2)
− 1, (41)

where the level parameter k = −2s for s < 0. The subtrac-
tion of unity in (41) reflects the gauging of the non-linear
σ model.

The variant corresponding to the high-energy scatter-
ing problem should be the non-linear SO(2, 1)/O(2) or
SU(1, 1)/U(1) model. This has the correct local symme-
try corresponding to the conservation of the number of
Reggeons exchanged in the t channel, i.e., the number
of spin variables per lattice site in the Heisenberg spin
chain. Moreover, it is known to possess a W∞ symme-
try for generic values of the level parameter k = −2s [11].
As pointed out by Faddeev and Korchemsky [2], Lipa-
tov’s model [1] of high-energy scattering can be regarded
as a combination of a holomorphic s = −1, i.e., k = 2,
spin chain and an anti-holomorphic s = 0, i.e., k = 0, spin
chain, and these are related by a similarity transformation.
We have already argued that the s = 0 model is a topo-
logical U(1) gauge theory, and shall now argue the same
for the s = −1 model, based on a previous analysis [11] of
the SU(1, 1)/U(1) model for k > 2, i.e., s < −1.

The k > 2 SU(1, 1)/U(1) model is known [8] to de-
scribe a black hole in string theory, with mass proportional
to 1/

√
(k − 2), as shown in Fig. 1. As can be seen from

equation (41), the central charge c > 2 in this range of k,
and the string black hole becomes critical when k = 9/4,
since then c = 26 in the absence of other degrees of free-
dom. It has been pointed out [15] that this model is de-
scribed in the neighbourhood of the singularity at the cen-
tre of the black hole by a topological U(1) gauge theory
coupled to matter fields (a, b) that parametrize the ap-
pearance of space-time coordinates away from the singu-
larity w: ∫

d2z
k

4π
(Dza.Dz̄b+ wεijFij). (42)

In the limit k → 2, all of space-time is absorbed by the
singularity, a, b → 0, and the theory becomes a pure topo-
logical U(1) gauge theory without matter fields. It has
further been pointed out that this theory has N = 2 su-
persymmetry, and that the bosonic part of this symmetry
algebra includes a W∞ ⊗ W∞ algebra [15].

Such a topological theory has been constructed in [15]
by twisting the N = 2 supersymmetric Wess-Zumino
model on SL(2, R)/U(1), adding to its stress tensor a
derivative of the U(1) current so as to ensure c = 0 [16].
It is known that N = 2 superconformal theories may be
constructed by adding and subtracting a free boson [17].
Unitarity is in general required in those constructions, al-
though it may be relaxed in some cases. The central charge
of this supersymmetric coset construction is given by

c =
3k
k − 2

(43)

yielding the result c = 0 as k = 2s → 0−, which coin-
cides with the ungauged case. Thus, we now see that the
case s → 0 is free from ambiguities, in the sense that in
both the limits s → 0± the central charge c → 0 in an
unambiguous way.

However, the limit s + 1 → 0 is ambiguous, since the
central charge of the s → −1− black-hole theory has the
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limiting behaviour c → +∞, while the central charge in
the case s → −1− has the limiting behaviour c → −∞.
One would like to find some ‘principal value’ prescription
to resolve this ambiguity. Crudely speaking, this should be
an ‘average’ between the limits s → 1± that is a conformal
field theory with c = 0. Our guiding principle in formu-
lating this is the Bethe-Ansatz approach of [2], where it
is observed that the s = 0 case is formally isomorphic to
the appropriate version of the s = −1 case. This prescrip-
tion can be achieved formally by representing the s = −1
case (and the equivalent s = 0− model) as a topologi-
cal σ-model field theory on the world sheet, that corre-
sponds to the impact-parameter space in the present case
of high-energy QCD. The requisite topological σ model
may be constructed by the appropriate twisting [16] of an
N = 2 supersymmetric σ model, causing the effective cen-
tral charge of the theory to vanish in the ungauged case 2.
As we shall see, an important aspect of this construction
is the emergence of a cigar-like metric, whose singularity
describes the limiting case s(s+ 1) = 0. A nice feature of
this type of metric is that it is the limiting non-compact
target-space-time case that admits instanton solutions, as
we discuss in the next section.

To justify this scenario formally, we pursue in more
detail our spin-charge-separation formalism for the de-
scription of the antiferromagnet, according to which the
magnon sector z is described by the CP 1 continuum field
theory. In the absence of fermions, the latter would be
equivalent to the O(3) σ model written in terms of the
ηα, α = 1, 2, 3 variables: η = zσαz, where the σα are the
2×2 Pauli matrices, with zz = const. corresponding to the
Casimir condition

∑3
α=1 η

2,α = s(s+1). As was discussed
in [10], there is a corresponding approximate formalism,
which is valid in the presence of fermions, in a variant of
the Heisenberg chain with next-to-nearest-neighbor inter-
actions. In this case, the Casimir constraint on the magnon
fields z reads:

zz +
1
G
ψ†ψ = const., (44)

where G ∼ t′/J ′ → ∞ in the model of [10], where the
primes denote next-to-nearest-neighbor interactions. this
enables one to maintain an approximate connection with
the O(3) σ model for antiferromagnets in this formalism.

We now show that this is helpful for identifying the
conformal field theory that corresponds to the limiting
cases s(s + 1) → 0−. In the general case with complex
spin, we start with the σ model continued analytically to
negative s:

1
s(s+ 1)

∫
d2z

3∑
i=1

(∂µη
i)gij(∂µη

j), (45)

where the spin variables satisfy:

3∑
i=1

ηigijη
j = s(s+ 1), (46)

2 Upon this twisting, the supersymmetric partner fermion
fields become BRST ghost fields

and the metric gij that contracts the spin indices is
Minkowskian in the non-compact case, and Euclidean in
the compact case. The Casimir factor s(s + 1) should be
retained as one takes the singular limit s(s+ 1) → 0, cor-
responding to the limits s → 0− and s = −1+, where it
becomes a singular constraint that should be solved with-
out making a prior normalization with respect to s(s+1).
Defining the variables:

w =
η1 + iη2
a− iη3

,

w = −η1 − iη2
a+ iη3

, a ≡
√
s(s+ 1),

(47)

where a2 is negative in the non-compact case, at finite s we
can map the classical lagrangian (45) onto the following σ
model:

λ2

π

∫
d2z

1
(1 + ww)2

(∂µw∂
µw), (48)

where
λ2 =

π

s(s+ 1)
. (49)

This resembles formally a conventional O(3) σ model, al-
though it has negative-definite metric in the non-compact
case s(s + 1) < 0. Formally, the central charge would be
c = 3k/(k + 2) with k = 2s.

We observe that the metric g(w) becomes singular in
the limit s(s + 1) → 0. and the theory is topological,
although the metric is not singular for other values of
s(s+ 1). However, it should also be noted that the ex-
pression of the action in terms of the η variables is not
regular at the point η1 = η2 = 0. To avoid this prob-
lem, as we shall discuss below, we define the theory in
the s(s + 1) < 0 regime through analytic continuation,
using the variables (47), in terms of which we construct
a σ model with Minkowski metric g(w) = 1/(1 + ww).
When expressed in terms of the η variables, the action
assumes the linear form (45), up to an overall normaliza-
tion. However, the metric is singular, and the theory at
the core of the singularity is topological for any s such
that s(s + 1) < 0. The limit s(s + 1) → 0− may be
taken smoothly, with the theory remaining Minkowskian.
This limit corresponds precisely to the singularity of the
black-hole metric, and the corresponding theory is topo-
logical. In that limit, the theory can be rotated without
problems to a Euclidean theory that possesses instantons,
as we discuss below. This is consistent with the above-
mentioned equivalence of the two cases (39),(40) in the
limit s(s+ 1) → 0±.

To gain formal insight into the nature of the relevant
conformal field theory in this limit, we notice that when
s(s+ 1) = 0, where the O(3) σ model (48) has a singular
metric tensor g(w,w) = 1/(0)2 → ∞. One may regulate
the theory in this limiting case by defining variables:

w =
η1 + iη2

−iη3 , w =
η1 − iη2
iη3

, (50)
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and keeping s(s+1) arbitrarily small, but non-zero in (46).
Then one reproduces (45) in the limit s(s+ 1) → 0 using
a metric g(w,w) in (48) of the form:

g(w,w) =
1

1 + ww
, (51)

which is of the cigar-like Euclidean black-hole type dis-
cussed in [8]. The latter is known to be described by a
non-compact SL(2, R)/U(1) conformal field theory and,
as mentioned previously, the limiting case s + 1 = 0 cor-
responds to the singularity of this black hole. The latter
is known [8,16,15] to be described by a topological world-
sheet conformal field theory, obtained from the N = 2
supersymmetric world-sheet σ-model by a suitable twist-
ing which ensures that c = 0, as mentioned earlier.

All the above coset constructions require U(1) sym-
metries. As we have shown in the previous section, the
holomorphic sector of Lipatov’s spin-chain model, which
has s = −1, has just such a bosonic symmetry in the
limit of a large number of Reggeized gluons, supporting
its identification with the k → 2 limit of the black hole
SU(1, 1)/U(1) model.

Thus, we reach the remarkable conclusion that spin
systems with s(s + 1) → 0−, corresponding to complex
spin, can be reformulated as topological σ models. In point
of fact, as we argue below, the topological symmetry is
broken by instanton effects that induce a non-perturbative
renormalization-group flow.

4 Renormalization-group flow, instantons
and high-energy scattering

We explore in this section the extent to which the under-
standing obtained above of the topological field-theore-
tical continuum limit of Lipatov’s spin-chain system may
cast light on the nature of high-energy scattering and pro-
vide, in particular, information on the dependence of the
Reggeon intercept on the number of Reggeized gluons. Our
main tools in this analysis are the renormalization group
and Zamolodchikov’s C theorem [20]. We recall first that
renormalization-group evolution entails a thinning out of
the physical degrees of freedom, which corresponds to a
decrease in the central charge c for unitary models. As
we discuss later, this theorem requires modification for
anti-unitary models such as those relevant to high-energy
scattering.

We start by discussing the unitary models in the s ≥
1/2 region of Fig. 1, which are described by SU(2)/U(1)
non-linear σ models, as discussed in Sect. 3. The effec-
tive coupling g(L) increases as the infrared cutoff L is
increased:

dg

dlnL
=
g2

2π
; g(L) ' g0/[1 − g0

2π
lnL]. (52)

Bearing in mind the relation g = 2/s, we see that this
corresponds to a decrease in the effective spin s, i.e., a
decrease in the level parameter k = 2s and hence in the

central charge (35), in agreement with Zamolodchikov’s C
theorem.

A similar analysis applies in the other unitary region,
s < −1 corresponding to k > 2 for the SU(1, 1)/U(1) non-
linear σ model. This region has been discussed elsewhere
[15] in connection with string black-hole decay, which is
due to higher-genus effects that renormalize the effective
action. They provide an absorptive part that is a signature
of instability, increase k and hence decrease the black-hole
mass, which is proportional to 1/

√
(k − 2). This also cor-

responds to a decrease in the central charge c, as given
by (41), in agreement with the C theorem. This higher-
genus decay effect can be represented by instantons in the
effective lowest-genus theory, since these describe transi-
tions between string black holes of different masses, i.e.,
different values of k and c [15].

The discussion of theories with 1/2 > s > −1 is more
complicated, because they are anti-unitary, a property
traceable to the fact that in high-energy scattering one
is calculating the energy dependence

sε = eεlogs : < H >= ε (53)

rather than a normal unitary evolution eiHt. The latter is
related to the former (53) by H → iH, which corresponds
to a change in sign in c =< TT >. Under these circum-
stances, Zamolodchikov’s C theorem does not apply [20].
However, even in anti-unitary theories the renormali-
zation-group flow must be such as to thin out the physical
degrees of freedom [21].

Symmetry breaking usually arises because the unbro-
ken phase of the theory has more degrees of freedom than
the broken phase, as is, for instance, the case for the topo-
logical phase of the N = 2 σ models corresponding to
a Wess-Zumino theory on SL(2, R)/U(1). In such mod-
els, the topological phase consists of an infinity of non-
propagating topological modes of the string. The latter
couple to the propagating string modes as a result of non-
perturbative conformal invariance [15]. This theory has
instantons (holomorphic maps) whose suppression is not
bounded away from zero 3. These induce extra logarithmic
scale dependences in correlation functions, vacuum ener-
gies, etc., which depend on the size of the world sheet.
They imply a breaking of the topological symmetry and a
thinning of the physical degres of freedom of the system.

We now argue that a similar instanton effect occurs
in the case of high-energy scattering, starting from the
conventional representation of the s > 0 spin system in the
continuum limit as an O(3) σ model. This representation
holds exactly only in the limit of large s, but it will be
sufficient for our purposes. Denoting by ηi : i = 1, 2, 3 the
mean-spin variable, with |η| = 1, the action of the O(3)
σ model can be written in terms of the complex variables
(47). The action

∫
d2x(∂µηi)2 can then be written in the

form (48), where the metric g(w) is given by:

g(w,w) =
1

(1 + |w|2)2 . (54)

3 The metric of the SL(2, R)/U(1) Euclidean black-hole tar-
get space is actually the limiting case in which the instantons
are unsuppressed, as a result of the non-compact moduli space
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The σ model (48) with the metric (54) has instanton so-
lutions:

w(z) = u+
ρ

z − z0
(55)

with winding number n = 1 4, which describe transitions
between the different topological sectors of the theory,
that are classified by the θ term of the model. These in-
stanton transitions reduce the central charge c by reducing
k = 2s towards zero from above, as illustrated in Fig. 1.

We now extend this discussion to include non-compact
target spaces. To this end, we generalize the metric g(w)
(54) to:

g(w,w) =
1

(1 + |w|2)q
(56)

with q arbitrary but real. Instanton solutions of the clas-
sical action exist only for q > 1/2. For q > 1 the target
space of the σ model is compact, and one has the conven-
tional instanton. We have argued in the previous section
(51) that the case q = 1 corresponds to the conformal field
theory describing the limit s(s + 1) → 0. The instanton
action is finite [19] for q = 1:

SI = a
1
3
λ2, (57)

where a is a numerical coefficient that depends on the reg-
ularization scheme. This implies that the instanton con-
tribution in the correlation functions of the model will be
weighted by gI , where

gI = e−a λ2
3 . (58)

In compact σ models, the anti-instantons have zero ac-
tion, and as such they do not contribute to correlation
functions. On the other hand, in the black-hole conformal
field theory, the anti-instantons make non-trivial contribu-
tions to the correlation functions of the model [19]. Their
effects may be summarized by adding an effective vertex:

VĪ ∼ −gĪ

∫
d2σg(w)χχ∂2

µ(g(w, w̄)χχ), (59)

where χ denotes the spin-0 fermions of the twisted N = 2
supersymmetric black-hole σ model.

The observables in the topological q = 1 σ model do
not depend directly on λ2. In view of the above-mentioned
regularization-scheme dependence, therefore, one may
consider gI (58) as the true renormalized coupling con-
stant of the model [19]. As already mentioned, the value
q = 1 [19] marks the border line between the compact and
non-compact target-space cases, where the moduli space of
the instantons is non-compact. In the topological version
of the SL(2, R)/U(1) model, the instanton action is finite
and the instantons constitute relevant operators, as far as
the breaking of conformal invariance is concerned [18,19].
Notice that in the limit s(s+ 1) → 0+, which for negative

4 It is straightforward to incorporate solutions with higher
winding number, that have a proportionality constant n in
front of the instanton action

s occurs for s < −1, the positive instanton action (57) be-
comes infinite, and the coupling constant gI → 0 (58). On
the other hand, in the region where s(s + 1) < 0, the in-
stanton contributions to the correlation functions are not
suppressed, and in fact diverge as s(s + 1) → 0−. In this
domain of the renormalization-group flow, the instanton
transitions therefore occur very rapidly.

The presence of instanton transitions leads, as we show
below, to a breaking of the topological symmetry [19] in
the sense of a false vacuum 5. The presence of the false
vacuum implies that the phase s(s + 1) < 0 is unstable,
driving the theory to the limiting case s = 0, which is
equivalent to our ‘principal value’ version of the case s =
−1.

To this end, we first review the breaking of the topolog-
ical symmetry by instantons in this class of theory. First,
we note that in our case the existence of instantons is as-
sociated with the Berry-phase term in the spin model, as
discussed in [9]. For our purpose, we note that this term
becomes, in the case of s = 0, just the complex-structure
term of the topological σ model, i.e. in terms of the w
variables (47):

SB =
∫
d2zg(w)(∂w∂w − ∂w∂w) (60)

with the same normalization coefficient as the kinetic
term. In terms of the ηi spin variables, this yields a term:

1
s(s+ 1)

∫
d2zεαβ

η1
η3
∂αη2∂βη3, (61)

which, using the Casimir constraint to express η3 in terms
of η1,2, becomes a total derivative:

1
s(s+ 1)

∫
d2εαβ

1
η2
1 + η2

2
∂α(η3

2)∂βη1. (62)

We note that the Berry-phase term (61) differs from the
conventional Berry-phase spin term by the factor 1/η3.
This extra power of the spin variable is essential in this
singular limit to guarantee the correct dimensionality in
spin space. To understand this, note that, in the non-
singular case, normalization of the spin variable by di-
vision by the square root of the non-vanishing Casimir
coefficient is possible. However, this is not possible in the
singular limit we are considering here. In this case, the
point ηi = 0 for all i = 1, 2, 3 is allowed, in contrast to
the non-singular positive-spin case. The Berry-phase term
has to be regular at this point, since it is a finite topolog-
ical invariant, the winding number, and the only way to
achieve this is to normalize by dividing with 1/η3s(s+ 1).
The guiding principle is to construct a continuous version
of the Berry-phase term that renders the instanton defor-
mations of the σ model relevant operators. At this stage,
we still lack a first-principles construction of the complex-
structure term from the underlying statistical model, but

5 The presence of a non-zero Witten index in the twisted
N = 2 supersymmetric σ model implies that supersymmetry
can only be broken in the sense of a false vacuum
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the above heuristic arguments for its form are sufficient
for our purposes.

The existence of such a topological term guarantees
that the instantons have finite action, in contrast to the
anti-instantons whose action diverges logarithmically with
the area of the world-sheet. Thus, instanton-anti-instanton
configurations can lead to extra logarithmic dependences
in correlation functions, that can affect the conformal in-
variance. The doping Ansatz we adopted earlier can super-
symmetrize the σ model, as appropriate for its topological
nature in the limit s = 0. For an analysis of instantons
in this supersymmetric version see [19]. The important
point is that the instantons result [22] in a renormaliza-
tion of the Wess-Zumino level parameter of the σ-model
k(= 2s) → k(ln(Λ/`), where Λ (`) is an infrared (ultravi-
olet) world-sheet renormalization-group length scale.

To understand this, we first note that the instanton-
anti-instanton vertices introduce new terms into the effec-
tive action. Making a derivative expansion of the instan-
ton vertex and taking the large-k limit, i.e. restricting our
attention to instanton sizes ρ ' `, these new terms ac-
quire the same form as the kinetic terms in the σ model,
thereby corresponding to a renormalization of the effective
level parameter in the large k(= 2s) limit [22], related to
the SL(2, R)/U(1) coset black-hole model [8]:

k(= 2s) → k − 2πk2d′ :

d′ ≡ gIgI

∫
d|ρ|
|ρ|3

`2

[(ρ/`)2 + 1]
k
2
, (63)

where ρ denotes the collective coordinate of the instantons
(55). If other perturbations are ignored, the instantons are
irrelevant deformations and conformal invariance is main-
tained. However, in the SL(2, R)/U(1) coset black-hole
model, there exist matter deformations, T0

∫
d2zFc,c

− 1
2 ,0,0,

with T0 assumed positive in the SL(2, R) notation of [23],
which change drastically the situation [22]. Similar mat-
ter excitations also appear in the spectrum of the exact
solutions of the Baxter equation for the spin model of high-
energy QCD of [2], so we need to take them into account.

The matter deformations induce extra logarithmic in-
finities in the shift (63), which are visible in the dilute-gas
and weak-matter approximations. In this case, there is a
contribution to the σ-model effective action of the form:

Seff 3 −T0

∫
d2zd2z′ < Fc,c

− 1
2 ,0,0(z, z̄)VII(z

′, z̄′) >, (64)

where VII denotes the instanton-anti-instanton deforma-
tion. Using the explicit form of the matter vertex F

Fc,c

− 1
2 ,0,0 =

1√
1 + |w|2

1
Γ ( 1

2 )2

×
∞∑

n=0

{2ψ(n+ 1) − 2ψ(n+
1
2
) +

+ln(1 + |w|2)}(
√

1 + |w|2)−n (65)

given by SL(2, R) symmetry [23], it is straightforward to
isolate a logarithmically-infinite contribution to the ki-

netic term in the σ model, associated with infrared infini-
ties on the world sheet. These are expressible in terms of
the world-sheet volume V (2)/`2 = Λ2/`2, the latter mea-
sured in units of the ultraviolet cut-off `:

Seff 3 −T0g
IgI

∫
d2z′

∫
dρ

ρ
(

`2

`2 + ρ2 )
k
2 (66)

×
∫
d2z

1
|z − z′|2

1
1 + |w|2 ∂z′w(z′)∂z̄′w(z′) + . . . ,

∝ −T0g
IgI ln

Λ2

`2

∫
d2z′ 1

1 + |w|2 ∂z′w(z′)∂z̄′w(z′).

The logarithmic scale dependence can be absorbed in a
shift of k: kren = k−T0g

IgI ln (Λ/`). The net result of such
a renormalization is to reduce the magnitude of k [22]. The
central charge c = 3k/(k−2) of the twisted model changes
as follows:

∂

∂t
c = − 6

(k − 2)2
∂

∂t
k ; t ≡ ln (Λ/`) (67)

Thus, the rate of change of c is opposite to that of k.
Therefore, by reducing k, one increases the central charge.
Since, for s → 0− (k → 0+), c → 0, one then observes from
(67) that, under the instanton-induced renormalization-
group flow, the central charge is driven towards c = 0−,
in the limit t → ∞, as c ' −6/(T0g

IgIt).
We note now that the resulting vacuum energy can

be found by computing the vertex operator of an anti-
instanton in the dilute-gas approximation for a σ-model
deformation corresponding to an instanton vertex oper-
ator. The result to leading order in the instanton-anti-
instanton coupling is:

EII
vac = < VI >I

= −gI

∫
d2x1∂

2
x2
< O(x1)O(x2) > |x1→x2 . (68)

Recalling that the dominant anti-instanton configurations
have sizes ρ ' `, we can use (68) to estimate that in the
infrared limit when Λ/` >> u

Evac = −16π2gIgI V
(2)

`2
[ln(Λ/`) +O(1)], (69)

where V (2) is the world-sheet volume.
At this stage, we appear to have some logarithmic de-

pendence as a result of instanton configurations. However,
as was argued in [19], upon summing over an arbitrary
number of instanton-anti-instanton pairs in the model, the
logarithmic infrared divergences in (69) disappear, and
the system is equivalent to a Coulomb-gas/sine-Gordon
model, in a similar spirit to the compact O(3) case, the
formal difference from the latter being that the rôle of
instantons in that case is now played by the instanton-
anti-instanton pairs.

The details of the analysis can be found in [19], and we
describe here only the basic results that are relevant for
our purposes. When one maps the system, resummed over
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an arbitrary number of instantons and anti-instantons, to
a Coulomb gas, the resulting vacuum energy (69) may be
re-calculated using the free massive-fermion representa-
tion [19], with action:

Seff =
1
π

∫
d2x{ψγµ∂µψ +mψψ}, (70)

where the mass |m| = 2π
`

√
8π√

gIgI , whose inverse plays
the rôle of a world-sheet infrared cut-off for the system.
The resulting vacuum energy is now given by:

Evac =
m2

2π
V (2)log

m`

2
∝ V (2)gIgI

(
log(gIgI) + const

)
, (71)

which shows that the model has finite vacuum energy
when resummed over the instanton-anti-instanton pairs,
which still break the topological symmetry [19]. We note
that the vacuum energy becomes zero in the limit where
s(s + 1) → 0 such that s(s + 1) > 0, and the topological
symmetry at the singularity is restored.

In the limit of a large number of Reggeized gluons, the
spatial size of the system, corresponding to the volume of
the impact-parameter space, can be related to the number
of Reggeons 6: V (2) ∝ Ng. Thus the vacuum energy of our
problem exhibits a non-trivial dependence on the number
of Reggeized gluons Ng in the scattering process, given in
the large-Ng limit by:

Evac ∝ Ng, (72)

where we have used fact that the world-sheet volume is
proportional to Ng. Taking into account also the rela-
tion [1] between Evac and the Regge intercept j: Evac =
1 − j = −∆, we see that the Regge intercept varies lin-
early with increasing Ng, at least for large Ng. A similar
result has also been argued on the basis of a Hartree-Fock
approximation to Lipatov’s Hamiltonian [4]. The sign of
the vacuum energy and hence the shift in the Regge in-
tercept is currently ambiguous in our approach, because
the instanton coupling constant (58) has a regularization-
scheme dependence [19], and hence should be considered
as arbitrary within our approach. For positive coefficients
a and s(s+1) → 0−, the instanton coupling gI → ∞, and
one would obtain positive (infinite) vacuum energy (71).
However, there exist regularization schemes such that a
is proportional to s(s + 1) in such a way so that gI is fi-
nite, and even smaller than one. In the framework of high-
energy QCD, such ambiguities may be associated with the
renormalization-group running of the coupling constant of
the system of Ng gluons, which according to [4] could be
responsible for the appearance of negative ground state en-
ergies in the Hartree-Fock approximation. In contrast, in
the fixed coupling constant approach to multicolour QCD,
on which the integrable model analysis of [2] is based,
the energy comes out positive, implying the instability of

6 We are back to the half-filled case, where the charge (hole)
excitations acquire a topological nature. In the s = 0 case, this
is also true for the spin excitations as well

multicolour states, which thus become irrelevant at high
energies.

We conclude that the instantons induce an instability
and break the topological symmetry [19] via a false vac-
uum. This results in a tendency of the −1 < s < 0 system
to flow towards the s = 0 ground case. The appropriate
choice of vacuum state for the ambiguous case s = −1
is then fixed by the requirement of isomorphism to the
holomorphic sector, as argued in [2].

5 Conclusions and prospects

We have analyzed in this paper the symmetries of Lipa-
tov’s model for high-energy scattering in QCD, and used
them to motivate a proposal for the conformal field the-
ory that should describe the continuum limit of Lipatov’s
model corresponding to the exchange of a large number
of Reggeized gluons in the t channel. Arguing by analogy
with the known correspondence between compact Heisen-
berg spin-chain models and non-linear O(3) σ models, we
have suggested that Lipatov’s model may corresond to a
limiting case of a non-compact SL(2, R)/U(1) σ model.
An analysis of instantons helps to explain the appearance
of this limiting model, which is a topological field theory
analogous to that describing the core of a 1+1-dimensional
string black hole. It possesses an N = 2 supersymmetric
algebra that includes the W∞ ⊗W∞ bosonic algebra pre-
viously identified in Lipatov’s model. Formal support of
our proposal for identifying the conformal field theory un-
derlying Lipatov’s model as the SL(2, R)/U(1) model is
provided by the observation reported in the second pa-
per of [2], that the exact solution of the Baxter equation
for the Ng = 2 Reggeon state bears a remarkable similar-
ity to the spectrum of the SL(2, R)/U(1) coset conformal
field theory. Our spin-charge-separation Ansatz may ex-
tend this similarity to the multi-Reggeon case as well.

Many aspects of our analysis are heuristic, and merit
further study. These include the validity of the ‘hole-
regulator’ scheme that we have proposed, the quantum
corrections to the W∞ ⊗ W∞ symmetry algebra that we
have identified, details of its elevation from ‘world sheet’
to ‘target space’, and the representation of the second W∞
algebra. The relation of the non-compact spin-chain and σ
models should be clarified, as has previously been done for
the compact spin-chain models and O(3) σ models. Also,
the rôle of instantons in non-compact σ models merits
further investigation.

We hope that our proposal may open the way to a more
powerful tool-box for analyzing high-energy scattering in
QCD. Field-theoretical techniques may allow the conse-
quences of both t- and s-channel unitarity to be investi-
gated more thoroughly, via the string topological diagram
expansion and the power of conformal field theory.
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